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We report on the study of the cyclotron spin-flip excitation �CSFE� in a quantum Hall system at unit filling,
where both the cyclotron quantum number and the spin number are changed by one compared to the ground
state. The CSFE composite mode has a double-exciton component, which, even within the first-order approxi-
mation in terms of the interaction energy, contributes to the CSFE correlation shift measured from the com-
bined cyclotron and Zeeman gap. This component cannot be accounted for in the single-mode approach, and
the problem effectively becomes the quantum four-body one. The final result is obtained for zero total mo-
mentum. Since in that case, the excitation is optically active, the result is compared with available experimental
data.
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I. INTRODUCTION

A two-dimensional electron gas �2DEG� in a high perpen-
dicular magnetic field possesses many remarkable features.1

In particular, it presents a rare case of strongly correlated
system governed by real Coulomb interaction �not by a
model Hamiltonian�, where, nevertheless, some solutions of
the quantum many-body problem can be found exactly. In-
deed, under the conditions of integer quantum Hall effect
�when the filling factor is �=1,2 ,3 , . . .�, the one-cyclotron
magnetoplasma and the lowest spin-flip modes are calculated
analytically to the leading order in the parameter rc
=EC /��c.

2–5 �c is the cyclotron frequency; EC=�e2 /�lB is
the characteristic interaction energy, with � being the aver-
age form factor related to the finite thickness of the 2DEG
�0.3���1�; and lB is the magnetic length. This astounding
property is the feature of either filled or half-filled highest-
occupied Landau level �LL�, where the simplest-type excita-
tions are single excitons or superposition of single-exciton
modes. The many-body problem is thereby reduced to the
two-body one, i.e., to the interaction of electron with an ef-
fective hole. Being quite in the context of similar studies, the
present paper, however, concerns the case which cannot be
reduced to a single-exciton problem.

We recall that 2DEG excitons are characterized by sub-
levels a= �na ,�a� and b= �nb ,�b�, where electron is promoted
from the nath LL with spin component Sz=�a to the nbth LL
with Sz=�b. The relevant quantum numbers are 	n=nb−na,
	Sz=�b−�a, and the two-dimensional �2D� wave vector q.
An excited state is reduced to a single exciton and becomes
exactly solvable in the following cases: �i� at odd filling �,
when 	n=1 and 	Sz=0 �magnetoplasmon� or 	n=0 and
	Sz=−1 �spin wave� �Refs. 2, 4, and 6� and �ii� at even �,
when 	n=1 and 	Sz=0, 
1 �magnetoplasmon and spin-flip
triplet�.4–6 At the same, other excitations may be discussed
within an approximate single-mode �SM� approach �in some
publications, called “time-dependent Hartree-Fock �HF�”
approximation7,8�, which excludes any quantum fluctuations
from a single exciton to a double- or many-exciton states.
For the above simplest cases of 	n and 	Sz, the SM calcula-
tion gives an asymptotically exact result, which may be
found perturbatively to the first order in rc �Ref. 9� because

these �	n ,	Sz� sets cannot correspond to any states except
single-exciton modes. Any complication of �	n ,	Sz� makes
the calculations substantially more difficult due to the neces-
sary expansion of the basis to the entire continuous set of
many-exciton states with the same total numbers 	n, 	Sz, and
q. For example, the double-cyclotron plasmon with 	n=2,
	Sz=0, and with given q, “dissociates” into double-exciton
states consisting of one-cyclotron plasmon’s pairs with the
total momentum equal to q.4 At odd �, a similar dissociation
occurs for the cyclotron spin-flip excitation �CSFE�, where
	n=−	Sz=1. The proper double-exciton states are pairs of a
magnetoplasmon �	n=1, 	Sz=0� and a spin wave �	n
=0, 	Sz=−1�. The problem thus changes from the two-body
case to the four-body one, and the correct solution should be
presented in the form of the combination of the single-
exciton mode and continuous set of double-exciton states.6 It
is important that in both cases, the desired solution corre-
sponds to a discrete line against the background of a continu-
ous spectrum of free exciton pairs. The technique of correct
solution has to be of essentially non-Hartree-Fock �non-HF�
type. Actually, this work concerns the fundamental question
of consistency of the HF approach.

By considering the case of unit filling factor, where the
number of electrons is equal to the number of magnetic-flux
quanta N�, we now report on a study of the CSFE with q
=0. This state is optically active and identified in the inelas-
tic light scattering experiments.10,11 Besides, it is exactly this
spin-flip magnetoplasma mode, which is the key component
of the elementary perturbation used in the microscopic ap-
proach to the skyrmionic problem.12 The calculation is per-
formed in a “quasianalytical” way, which should, in prin-
ciple, lead to the result that is exact in the leading
approximation in rc. In our case, the envelope function de-
termining the combination of the double-exciton states is one
dimensional—i.e., it only depends on the modulus of the
excitons’ relative momentum. This function is chosen in the
form of expansion over infinite orthogonal basis, where ev-
ery basis vector obeys a specific symmetry condition neces-
sary for the total envelope function. Even to the first-order
approximation in rc, we obtain a double-exciton correction to
the former SM result8,10 for the CSFE energy.
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II. EXCITONIC REPRESENTATION FORMALISM

As a technique, we use the excitonic representation �ER�,
which is a convenient tool for the description of the 2DEG in
a perpendicular magnetic field.5,6,13 When acting on the
vacuum �0� �in our case

��0� = �↑ ,↑, . . . ↑
N�

� ,

the exciton operators produce a set of basis states, which
diagonalize the single-particle term of the Hamiltonian and

some part ĤED of the interaction Hamiltonian.6,12 Exciton
states are classified by q and it is essential that in this basis
the LL degeneracy is lifted.

So, the generic Hamiltonian is Ĥ= Ĥ1+ Ĥint, where

Ĥ1 = �
�
� dr�̂�

†�r�	 1

2m�
�i�� − eA� /c�2 + gBBŜz
�̂��r�

and

Ĥint =
1

2 �
�1,�2

� dr1dr2�̂�2

† �r2��̂�1

† �r1�

�U�r1 − r2��̂�1
�r1��̂�2

�r2� . �1�

Choosing, for example, the Landau gauge and substituting

for the Schrödinger operator �̂�
† =�npanp�

† �np�
� �indexes

n , p ,� label the LL number, intra-LL state, and spin sub-
level�, one can express the Hamiltonian �1� in terms of com-
binations of the various components of the density-matrix
operators.5,6,12 These are exciton operators defined as5,6,12,13

Qabq
† = N�

−1/2�
p

e−iqxpbp+qy/2
† ap−qy/2 and Qabq = Qba−q

† ,

�2�

and obeying the commutation algebra6

�Qcdq1

† ,Qabq2

† � � N�
−1/2�e−i�q1 � q2�z/2	b,cQadq1+q2

†

− ei�q1 � q2�z/2	a,dQcbq1+q2

† � , �3�

�in our units lB=�c� /eB=1�. Here a ,b ,c , . . . are binary in-
dexes �see above�, which means that ap

† =anap�a

† and bp
†

=anbp�b

† . . . . We will also employ for binary indexes the no-
tations n= �n ,↑� and n̄= �n ,↓�, so that the single-mode com-
ponent of the CSFE is defined as Q

01̄q

† �0�. The interaction

Hamiltonian can be presented as Ĥint= ĤED+ Ĥ�, where ĤED,
if applied to the state Qabq

† �0� yields a combination of single-
exciton states with the same numbers 	n, 	Sz, and q �see

Refs. 6 and 12 and therein ĤED expressed in terms of exciton
operators�. In the framework of the above SM approxima-
tion, the CSFE correlation energy10 is obtained from the

equation E01̄�q�= 0�Q01̄q�Ĥint ,Q01̄q

† ��0�, where only the ĤED

part of the interaction Hamiltonian contributes to the expec-
tation. In the following, we need this SM value at q=0,
namely E01̄�0��ESM= 1

2�0
�p3dpV�p�e−p2/2, where 2�V�q� is

the Fourier component of the effective Coulomb vertex in

the layer. In the strictly 2D limit, �→1 and V�q�→e2 /�lBq.

The problem arises due to the “troublesome” part Ĥ� of
the interaction Hamiltonian, which cannot be diagonalized in

terms of single-exciton states. For our task, we keep in Ĥ�

only the terms contributing to �Ĥ� ,Q
01̄q

† ��0� and besides pre-

serving the cyclotron part of the total energy �i.e., commut-

ing with Ĥ1�. In terms of the ER, these are5,6

Ĥ01̄ = �
q

q2

2
V�q�e−q2/2Q01q

† Q0̄1̄q + H . c. �4�

Using Eq. �3� and identities Qaaq
† �0��N�

−1/2	q,0�0� if a
= �0,↑� and Qaaq

† �0��0 if a� �0,↑�, one can find that the

operation of Ĥ01̄ on vector Q
01̄q

† �0� results in a combination

of states of the type of N�
−1/2�sf�s�Q

00̄q/2−s

† Q01q/2+s
† �0�, with a

certain regular and square-integrable envelope function
��f�s��2ds�1. The norm of this combination is not small as
compared to 0�Q01̄qQ01̄q

† �0��1 and the term �4� must be

taken into account when calculating the CSFE energy.
On the other hand, if the set of double-exciton states

�s ,q�=Q
00̄q/2−s

† Q01q/2+s
† �0� is considered, then one finds that

they, first, are not exactly but “almost” orthogonal,
q1 ,s1 �s2 ,q2�=	q1,q2

�	s1,s2
�, where �	s1,s2

��	s1,s2
−ei�s1 � s2�z /N� and, second, �s ,q� satisfies the equation

�Ĥint,Q00̄q/2−s

† Q01q/2+s
† ��0�

= �Esw��q/2 + s�� + Emp��q/2 − s����s,q� + ��̃� , �5�

where the state ��̃� has a negligibly small norm �̃ � �̃�
�EC /N�. Therefore, the double-exciton state �s ,q� in the
thermodynamic limit actually corresponds to the free nonin-
teracting excitons, one of them is a spin exciton �spin wave�
with energy �gBB�+Esw, where

Esw�q� = �
0

�

pdpV�p�e−p2/2�1 − J0�pq�� , �6�

while the other is a magnetoplasmon with energy ��c+Emp,
where

Emp�q� =
q2

2
V�q�e−q2/2 + �

0

�

pdpe−p2/2V�p��1 −
p2

2
�

��1 − J0�pq�� , �7�

where J0 is the Bessel function �cf. Refs. 2 and 4�.
Thus, for the CSFE state, we try the vector �Xq�= X̂q�0�,

where X̂q is a combined operator,

X̂q = Q
01̄q

†
+

1
�2N�

�
s

�q�s�Q
00̄q/2−s

† Q01q/2+s
† . �8�

Actually, only a certain ‘‘antisymmetrized’’ part ��q� of the
envelope functions contributes to the double-exciton combi-
nation in �Xq�.3,5,6 In our case, the antisymmetry transform is
��q�=�q�s�− 1

N�
�s�e

i�s � s��z�q�s��. Such a specific feature
originates from the generic permutation antisymmetry of the
Fermi wave function of our many-electron system. We may
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therefore consider only the ‘‘antisymmetric’’ functions, for
which

�q = ��q�/2. �9�

Our task is to find the energy of the eigenvector �Xq� and the
“wave function” �q�s�, assuming that the latter is regular and
square integrable. If Eq is the correlation part of the total
CSFE energy �namely, ECSFE=Evac+ �gBB�+��c+Eq�, then
Eq is found from

�ĤED + Ĥ
01̄
� ,X̂q��0� = Eq�Xq� �10�

�see Appendix A�. Now we project this equation onto two
basis states �p ,q� and Q

01̄q

† �0�, and obtain two closed

coupled equations,

�2N��1/2q,p��Ĥ01� ,Q
01̄0q

† ��0�

+ �
s

�q�s�q,p��ĤED,Q
00̄q/2−s

† Q01q/2+s
† ��0� = Eq�q�p� , �11�

and

E01̄�q� + �2N��−1/2�
s

�q�s�

�0�Q01̄q�Ĥ01� ,Q
00̄q/2−s

† Q01q/2+s
† ��0� = Eq, �12�

for Eq and �q�p�.

III. EIGENSTATES, THE CYCLOTRON SPIN-FLIP
EXCITATION ENERGY, AND CONTINUOUS SPECTRUM

Next step is a routine treatment of Eqs. �11� and �12� in
terms of calculation of commutators guided by commutation
rules �3�. In the q=0 case, which we immediately consider,
the function �0�p� depends only on the modulus of p. As a
result, we obtain �cf. Appendix B�

�E − Esw�q� − Emp�q����q� + �
0

�

sds	K1�s,q���s�

+
K2�s�

�
�

0

�

d��1 − cos�s � q�����q + s��
 = g�q� ,

�13�

and

E − ESM =
1
�2
�

0

�

dpp3V�p�e−p2/2��p� , �14�

�we omit subscript 0 in E0 and �0�, where

g�q� =
q2

2�2
V�q�e−q2/2 −

1

2�2
�

0

�

p3V�p�e−p2/2J0�pq�dp ,

�15�

K1�q,s� =
s2

2
e−s2/2V�s�J0�qs� ,

and

K2�s� = �2 −
s2

2
�V�s�e−s2/2 �16�

�� in Eq. �13� is the angle between s and q�.
The problem has, thus, been integrable to yield in the

thermodynamic limit a pair of coupled integral equations for
one-dimensional function ��q� and the eigenvalue E. In or-
der to solve this system, we employ the method of expansion
in orthogonal functions,

��q� = �
n=1,3,5, . . .

2N−1

An�n�q� . �17�

These �n=�2Ln�q2�e−q2/2, with odd indexes of the Laguerre
polynomials ��0

�qdq�m�n=	m,n�, are chosen as a natural ba-
sis satisfying, �i� the property of integrability and expected
analytic and asymptotic features of �0�q� and �ii� the anti-
symmetry condition �9�. In other words, we change from the
basis formed by the set of nonorthogonal double-exciton
states �s ,0��Q

00̄−s

† Q01s
† �0� to a new set of basis states

�DX,n�= �2N��−1/2�s�n�s��s ,0�, which are strictly orthogo-
nal. Indeed, one can check by employing Eq. �3� and identity
1

N�
�se

i�q � s�z�n�s���0
�sdsJ0�qs��n�s��−�n�q� that m ,DX

�DX,n��	m,n. The integer number N is dimensionality of
this new double-exciton basis.

After substitution of Eq. �17� into Eq. �14�, the latter takes
the form E=F, where

F = ESM +
1
�2

�
n=1,3,5, . . .

2N−1

An�
0

�

dpp3V�p�e−p2/2�n�p� . �18�

Let us consider the ideal 2D case, where V�q�=1 /q. Here
and below, energy is measured in units of e2 /�lB. After sub-
stitution of the expansion �18� into Eq. �13�, further multipli-
cation by basis functions �m�q� and integration ��. . .qdq�
lead to the set of N linear algebraic equations with respect to
An. Finding An for a given E and substituting them into Eq.
�18�, we obtain F�E�. The condition F�E�=E yields the de-
sired result E=ESF.

Figure 1 shows the result of calculations for N=50. The
lines, which are restricted by vertical asymptotes, reflect the
result of calculation of F�E�. Points of singularity E�i�, at
which F goes to infinity are roots of the equation DN�E�=0,

FIG. 1. Graphical solution of Eqs. �13� and �14�. Intersection of
the F=E straight line with the dashed line corresponds to the CSFE
energy ESF�0.71. See text for details.
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where DN is the determinant corresponding to the “left side”
of the set of equations for An. By increasing N, we increase
the order of equation DN�E�=0, so that this has up to N real
roots. Indeed, when observing the evolution of F�E� with
increasing N, one finds that the number of singular points
grows, and they become more densely placed. For N→�,
one could expect that a singular point appears within an ar-
bitrarily small vicinity of every value E. Since all the vertical
asymptotes E=E�i� are crossed by the straight line F=E �see
Fig. 1�, we come to the conclusion that for any E, there is a
singular solution of Eqs. �13� and �14�. Such solutions with
singular functions ��q� form a band.

The physical meaning of this result is quite transparent.
Namely, the band corresponds to energy Esw�q�+Emp�q� of
unbound spin wave and magnetoplasmon, which almost do
not scatter at each other �see Eq. �5��. Indeed, considering
that q0�E� is the root of the equation Esw�q0�+Emp�q0�=E and
substituting �0�s�=�N�	�s�,q0

into Eq. �8�, we find the com-
bined state �X0�, which presents itself the two-exciton com-
ponent with the norm �q0

�N�, and a minute admixture of
the component Q

01̄0

† �0� having unit norm. It would be inter-
esting to see how this result follows from Eqs. �13� and �14�.
For that, we change in the thermodynamic limit �N�	�s�,q0
→�8 /�	�s−q0� and isolate the singularity ��q�=C	�q
−q0�+u�q�, where u�q� is assumed to be regular. By substi-
tuting this expression for ��q� into Eqs. �13� and �14�, we
obtain, at any given parameter E within the band 0�E
�Esw���+Emp���, two coupled equations determining con-
stant C�1 and a regular function u�q�.

Now, turning back to Fig. 1, we consider the solution E
=F�E�, where the F=E line crosses a conventional envelope
curve tracing the regions of regularity of � that is determined
by Eq. �17�. Such regions at a finite N should be as distant as
possible from the points of singularity and we simply define

them as vicinities of “middle” points Ē�i�= 1
2 �E�i�+E�i+1��. The

envelope curve may obviously be defined as the line passing

through the points �Ē�i� , F�Ē�i���. The intersection with the
straight line F=E occurs at the only point stable with respect
to evolution of this picture at N→�. This intersection point
is readily seen in Fig. 1.

Figure 1 shows the build up of singular points �vertical
lines� with vanishing E and vice versa, a certain rarefaction
of singularities in the vicinity of ESF. The former reflects
growth of the density of states at the bottom of the exciton-
pairs’ band, whereas the latter is a usual effect of the “levels’
repulsion.” Note that the double-exciton shift for the CSFE
level is positive as compared to the value ESM=0.627. This is
expected because the repulsion of the CSFE from the lower-
lying crowded states of unbound excitons should be stronger
than from the upper states having comparatively low density.
One can also see in Fig. 1 some trend toward the concentra-
tion of singularity points E�i� at higher energies E. This is
evidently a consequence of the density of states growth at the
top of the exciton band.

IV. DOUBLE-MODE APPROXIMATION, FINITE
THICKNESS, AND DISCUSSION

In general, the larger N is the more accurate the calcula-
tion of ��q� and E is, i.e., the envelope curve in Fig. 1

becomes discernible and may be drawn only at considerable
N. At the same time, the analysis reveals that the intersection
point with the F=E line is rather stable and only weakly
depends on N. This feature prompts us to consider the case
N=1, where double-exciton states mixed with Q

01̄q

† �0� are

modeled by a single vector �DX,1�. Actually, the N=1 ap-
proximation for the problem determined by Eqs. �13�, �14�,
and �17� is equivalent to a variational procedure within the
basis of two orthogonal trial states �X0��1�=Q

01̄0

† �0�
+A1�DX,1� and �X0��2�=A1Q01̄0

† �0�− �DX,1�. If calculating

Ei(A1) =
�i�X0�Ĥint�X0��i�

�i�X0�X0��i� ,

where i=1,2, and minimizing either of these two values find-
ing thereby the parameter A1=A at which the minimum
takes place, then the correlation part E of the CSFE energy is
determined by the largest one of the two energies, E1(A)
and E2(A). Namely E=max�E1(A) , E2(A)�−Evac

int �Evac
int

= 0�Ĥint�0� denotes the correlation part of the ground-state
energy.�

After minor manipulations at N=1, we find that this
simple double-mode approximation �DMA� reduces our
problem to the secular equation,

det��E − Ei�	ik + �1 − 	ik�Dik� = 0 �19�

�indexes i and k are 1 or 2�, where E1=�0
�qdqV�q���q�,

E2=ESM, and D12�D21=�0
�qdqV�q�d�q�, with �=2q2�1

−q2�2e−3q2/2 + 1
2 �4−5q2 + q4� e−q2

+ 1
16�q2−4�3 e−3q2/4 + �2

−q2 /2�e−q2/2 and d=q2�q2−1�e−q2
. Only the largest root of

secular equation �19� has physical meaning. In the ideal 2D
case, we easily obtain the DMA correlation energy of the
CSFE ESF=0.766. Comparing this result with Fig. 1, we con-
clude that even the DMA works rather well.

Figure 2 shows the CSFE correlation energy calculated

FIG. 2. Main picture: DMA and SMA correlation energies in
dimensionless units against parameter b. Inset: DMA energy against
the magnetic field when b=5.45B−1/2 �b=0.213lB /nm; lB in nm’s, B
in Teslas�; symbols are experimental data for the 25 nm quantum
wells �Ref. 11�.
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within the DMA and employing the SM approximation
�SMA�, if the vertex V for a real 2DEG is defined as V
=Fb�q� /q with the formfactor,1,8

Fb�q� =
1

8
�1 +

q

b
�−3	8 + 9

q

b
+ 3�q

b
�2
 .

Here b=b0lB is a dimensionless parameter corresponding to
dimensionless q. b0 is considered to be independent of the
magnetic field. It is seen that additional shift of the CSFE
energy determined by the DMA, being about 15% in the
strict 2D limit �i.e., in the b→� case�, becomes smaller
��5–6%� in real samples. This difference is not observable
experimentally.11 Meanwhile, the DMA results are in good
agreement with experimental data, where the CSFE correla-
tion energy is measured as a function of magnetic field, see
inset in Fig. 2. The chosen value b0=0.213 /nm is quite con-
sistent with the available wide quantum wells.11

In conclusion, we note that preliminary analysis indicates
that the studied double-exciton correction should be more
substantial in the case of a fractional filling, e.g., at �=1 /3.
Moreover, contrary to the SMA shifting of the energy to
lower values as compared to a HF result,8 the approach, tak-
ing into account the double-exciton component, should lead
to a considerable positive shift in the CSFE correlation en-
ergy.
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APPENDIX A: EXCITONICALLY DIAGONALIZABLE
PART OF THE HAMILTONIAN

If using ER, the relevant operators of the excitonically
diagonalizable part in our case are

ĤED = �
a=0,0̄,1,1̄

Ĥa + �
ab=00̄,01,0̄1,01̄

Ĥab,

where

Ĥa =
1

2�q
V�q�haa

2 �q��Qaaq
† Qaaq − N�

−1/2Qaa0
† � ,

Ĥab = �q
V�q��haa�q�hbb�q�Qaaq

† Qbbq

+ �hab�q��2	�a,�b
�Qabq

† Qabq − N�
−1/2Qbb0

† �� ,

and

hab = �na!

nb!�1/2� iqx + qy

�2
�nb−na

Lna

nb−na�q2/2�e−q2/4

�Li
j is Laguerre polynomial� .

APPENDIX B: THE qÅ0 CASE

For reference, we write out Eqs. �11� and �12� in the q
�0 case,

�Eq − Esw��q/2 − p�� − Emp��q/2 + p����q�p� −
1
�2

�gq�p��

= �2��−1� ds�q�s���U00��p − s�� − Ũ01��q/2 + s���ei�p � s�z

+ U01��p − s��ei�s � p�z − U00��p − s��ei�q � �s − p��z/2

− U01��p − s��ei�q � �p − s��z/2� ,

and Eq=E01̄�q�+ 1
��2

�dpgq
��p��q�p�, where gq�p�= Ũ01��p

+q /2��ei�p � q�z/2, Ũ01=V�q��h01�q��2, and Unanb
=V�q�hab

2 �q�
�see notations of Appendix A; notation �gq� in the left-hand
side means the antisymmetry transform defined in Sec. II. If
q is chosen parallel to ŷ, then �q�p� is an even function with
respect to the replacement px→−px. The SM result E01̄�q�
was calculated in Ref. 8.
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